refactor(ai):重构分割模型包装类继承结构- 将 Anime2ModelWrapper、Anime2VividModelWrapper 和 AnimeModelWrapper 改为继承自 VividModelWrapper 基类

- 移除重复的 ResultFiles 内部类和相关工具方法实现
- Anime2Segmenter 和 AnimeSegmenter 继承自抽象基类 Segmenter
- Anime2SegmentationResult与 AnimeSegmentationResult 继承 SegmentationResult
- 重命名 LabelPalette 为 BiSeNetLabelPalette 并调整其引用
- 更新模型路径配置以匹配新的文件命名约定
- 删除冗余的 getLabels() 和 getPalette() 方法定义
- 简化 segmentAndSave 方法中的类型转换逻辑- 移除已被继承方法替代的手动资源管理代码
- 调整 import 语句以反映包结构调整- 清理不再需要的独立主测试函数入口点- 修改字段访问权限以符合继承设计模式
- 替换具体的返回类型为更通用的 SegmentationResult 接口- 整合公共功能至基类减少子类间重复代码
- 统一分割后处理流程提高模块复用性
- 引入泛型支持增强 Wrapper 类型安全性
- 更新注释文档保持与最新架构同步
- 优化异常处理策略统一关闭资源方式
- 规范文件命名规则便于未来维护扩展
- 提取共通逻辑到父类降低耦合度
- 完善类型检查避免运行时 ClassCastException 风险
This commit is contained in:
tzdwindows 7
2025-10-31 09:25:18 +08:00
parent a725e7eb23
commit e06c59c8d1
20 changed files with 700 additions and 1150 deletions

View File

@@ -0,0 +1,154 @@
package com.chuangzhou.vivid2D.ai;
import ai.djl.MalformedModelException;
import ai.djl.inference.Predictor;
import ai.djl.modality.cv.Image;
import ai.djl.modality.cv.ImageFactory;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDList;
import ai.djl.ndarray.NDManager;
import ai.djl.ndarray.types.DataType;
import ai.djl.repository.zoo.Criteria;
import ai.djl.repository.zoo.ModelNotFoundException;
import ai.djl.repository.zoo.ZooModel;
import ai.djl.translate.Batchifier;
import ai.djl.translate.TranslateException;
import ai.djl.translate.Translator;
import ai.djl.translate.TranslatorContext;
import com.chuangzhou.vivid2D.ai.face_parsing.BiSeNetLabelPalette;
import com.chuangzhou.vivid2D.ai.face_parsing.BiSeNetSegmentationResult;
import com.chuangzhou.vivid2D.ai.face_parsing.BiSeNetSegmenter;
import javax.imageio.ImageIO;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.nio.file.Path;
import java.util.*;
public abstract class Segmenter implements AutoCloseable {
// 内部类用于从Translator安全地传出数据
public static class SegmentationData {
public final int[] indices;
public final long[] shape;
public SegmentationData(int[] indices, long[] shape) {
this.indices = indices;
this.shape = shape;
}
}
private String engine = "PyTorch";
protected final ZooModel<Image, Segmenter.SegmentationData> modelWrapper;
protected final Predictor<Image, Segmenter.SegmentationData> predictor;
protected final List<String> labels;
protected final Map<String, Integer> palette;
public Segmenter(Path modelDir, List<String> labels) throws IOException, MalformedModelException, ModelNotFoundException {
this.labels = new ArrayList<>(labels);
this.palette = BiSeNetLabelPalette.defaultPalette();
Translator<Image, Segmenter.SegmentationData> translator = new Translator<Image, Segmenter.SegmentationData>() {
@Override
public NDList processInput(TranslatorContext ctx, Image input) {
return Segmenter.this.processInput(ctx, input);
}
@Override
public Segmenter.SegmentationData processOutput(TranslatorContext ctx, NDList list) {
return Segmenter.this.processOutput(ctx, list);
}
@Override
public Batchifier getBatchifier() {
return Segmenter.this.getBatchifier();
}
};
Criteria<Image, Segmenter.SegmentationData> criteria = Criteria.builder()
.setTypes(Image.class, Segmenter.SegmentationData.class)
.optModelPath(modelDir)
.optEngine(engine)
.optTranslator(translator)
.build();
this.modelWrapper = criteria.loadModel();
this.predictor = modelWrapper.newPredictor();
}
/**
* 处理模型输入
* @param ctx translator 上下文
* @param input 图片
* @return 模型输入
*/
public abstract NDList processInput(TranslatorContext ctx, Image input);
/**
* 处理模型输出
* @param ctx translator 上下文
* @param list 模型输出
* @return 模型输出
*/
public abstract Segmenter.SegmentationData processOutput(TranslatorContext ctx, NDList list);
/**
* 获取批量处理方式
* @return 批量处理方式
*/
public Batchifier getBatchifier(){
return null;
}
public SegmentationResult segment(File imgFile) throws TranslateException, IOException {
Image img = ImageFactory.getInstance().fromFile(imgFile.toPath());
// predict 方法现在直接返回安全的 Java 对象
Segmenter.SegmentationData data = predictor.predict(img);
long[] shp = data.shape;
int[] indices = data.indices;
int height, width;
if (shp.length == 2) {
height = (int) shp[0];
width = (int) shp[1];
} else {
throw new RuntimeException("Unexpected classMap shape from SegmentationData: " + Arrays.toString(shp));
}
// 后续处理完全基于 Java 对象,不再有 Native resource 问题
BufferedImage mask = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB);
Map<Integer, String> labelsMap = new HashMap<>();
for (int i = 0; i < labels.size(); i++) {
labelsMap.put(i, labels.get(i));
}
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
int idx = indices[y * width + x];
String label = labelsMap.getOrDefault(idx, "unknown");
int argb = palette.getOrDefault(label, 0xFF00FF00);
mask.setRGB(x, y, argb);
}
}
return new SegmentationResult(mask, labelsMap, palette);
}
public void setEngine(String engine) {
this.engine = engine;
}
@Override
public void close() {
try {
predictor.close();
} catch (Exception ignore) {
}
try {
modelWrapper.close();
} catch (Exception ignore) {
}
}
}